GTI Project Number: 40453-01

COMPARATIVE ANALYSIS OF TWO SAMPLES FROM KREHER PARK, ASHLAND, WISCONSIN

SECOND ADDENDUM TO THE REPORT:
COMPARATIVE ANALYSIS OF NAPL RESIDUES FROM
THE NSP ASHLAND FORMER MGP SITE AND THE
ASHLAND LAKEFRONT PROPERTY (KREHER PARK)

Prepared by

GAS TECHNOLOGY INSTITUTE 1700 South Mount Prospect Road Des Plaines, Illinois 60018

For

NORTHERN STATES POWER COMPANY
414 Nicollet Mall
Minneapolis, Minnesota 55401

April, 2001

EXECUTIVE SUMMARY

The Institute of Gas Technology (IGT) has conducted laboratory analysis of two samples retrieved from Kreher Park in Ashland, Wisconsin. Samples were collected and described according to information obtained by URS Corporation. Sample "NAPL/Water" was retrieved from the upgradient trench, south of the Wisconsin Central Railroad tracks, 34 feet east of the concrete pad. This sample consisted of a NAPL-water mixture. Sample "12" Clay pipe" was retrieved from the interior of a 12 inch clay pipe found in the seep trench north of the railroad tracks. This pipe is located approximately 24 feet south of MW-7, and 41 feet west of the 3 inch stand pipe marking the former LP loading pipe. This sample was highly viscous in nature. Samples were tested using identical methods described in the report, Comparative Analysis Of NAPL Residues From The NSP Ashland Former MGP Site And The Ashland Lakefront Property (Kreher Park) (NAPL Report) and evaluated against results of that report. This document serves as the Second Addendum to the NAPL Report (March, 2000.) An initial Addendum Report, Comparative Analysis Of Sediment Samples From The Chequamegon Bay Near The Kreher Park Shoreline, Ashland Wisconsin, was prepared in May, 2000.

Using GC/FID fingerprinting techniques, results concluded that the NAPL/Water material and the 12" Clay Pipe material are highly similar (nearly identical) in tar composition, and are very similar to the NAPL sample from MW-7, previously described in the NAPL Report. It is likely that all these samples share a common source. The tar from samples NAPL/Water and 12" Clay Pipe were different from tar found in previously examined NAPL samples from wells MW-15 and EW-1.

Samples NAPL/Water and 12" Clay Pipe each possess a middle weight petroleum fraction. The samples NAPL/Water and 12" Clay Pipe contained 19-21 percent aliphatic hydrocarbon. These percentages are similar to the percentage of aliphatic fraction found in sample MW-7. As concluded in the NAPL Report, the NAPL material from well MW-7 is consistent with wood treatment activities reportedly conducted at Kreher Park.

INTRODUCTION

Northern States Power Company (NSP) has contracted the Gas Technology Institute (GTI) to determine whether samples retrieved from locations within Kreher Park in Ashland, Wisconsin are chemically similar or dissimilar to NAPL resides found in wells located at the NSP former MGP site (MW-15 and EW-1) and in an area of reported former wood treatment operations in Kreher Park (MW-7). The results of the analysis serve as an Addendum to the report, Comparative Analysis of NAPL Residues From The NSP Ashland Former MGP Site And The Ashland Lakefront Property (Kreher Park) (NAPL Report).

GTI and its subcontractor (META Environmental, Inc.) have completed forensic analysis of two samples. Analyses of these samples have included identification and/or quantification of: 1) monocyclic aromatic hydrocarbons (MAHs), 2) polycyclic aromatic hydrocarbons (PAHs), and, 3) aliphatic hydrocarbons and polar hydrocarbons. Analyses and hydrocarbon fingerprinting were performed using gas chromatography with flame ionization detection (GC/FID). These analyses are described in the NAPL Report. The purpose of these tests was to determine chemical similarity or dissimilarity between the Kreher Park samples ("NAPL/Water" and "12" Clay Pipe") and between previously described characterization of NAPL samples from wells MW-15, MW-7 and EW-1 (NAPL Report.) Results of all sample analyses are included in this Addendum Report, with expanded analytical data detailed in Appendix A of this Addendum Report.

SITE BACKGROUND

The Kreher Park area is reclaimed land of which the south boundary defined the original lake shoreline. Beginning in the mid to late 1800's, the area was filled with a variety of materials including slab wood, concrete, demolition debris, municipal and industrial wastes and earth fill that created the land now occupied by the park. Kreher Park area was constructed to create land for the lumber operations that subsequently followed at the site. Several lumber operations occupied the property, but the largest facility and longest tenured was the John Schroeder Lumber Company. Schroeder's "articles of incorporation" stated that one of the company's business purposes was to: "...manufacture and deal in prescrvative chemicals, to own and operate wood preservation plants and plants for the manufacture and stillization of wood-byproducts, to explore and develop lands for gas, minerals, ores and oils, and to collect, work, use, and treat any timber and all forest and other vegetable products." Schroeder's Ashland Sawmill/Wood Processing facility was described as, "one of the largest and best equipped mills in the greater northwest." Details of the Schroeder operation, including the physical location of facility appurtenances, were obtained from interviews of eyewitnesses, review of historic documents, as well as fire insurance (Sanborn) maps.

Following Schroeder Lumber's tenure, Ashland County transferred title to the City of Ashland in 1942, which has owned the site since. During some time in the 1940's and 50's, the City operated a portion of the site in the present northwest area as a waste disposal facility (landfill). In 1951, the Wastewater Treatment Plant (WWTP) was constructed and operated as the City's sewage treatment facility until 1989. During exploratory work to expand the WWTP into the Kreher Park area in 1989, soil and groundwater contaminated with creosote/coal tar compounds were encountered.

METHODS

Sample collection was performed by URS Corporation and described for the purposes of this report. Sample NAPL/Water was collected on February 20, 2001. Sample 12" Clay Pipe was collected on February 21, 2001. Sample "NAPL/Water" was retrieved from the upgradient trench, south of the Wisconsin Central Railroad tracks, 34 feet east of the concrete pad. This sample consisted of a NAPL-water mixture. Sample "12" Clay pipe" was retrieved from the interior of a 12 inch clay pipe found in the seep trench north of the railroad tracks. This pipe is located approximately 24 feet south of MW-7, and 41 feet west of the 3 inch stand pipe marking the former LP loading pipe. This sample was highly viscous in nature.

Sample NAPL/Water was prepared for analysis by liquid:liquid extraction using dichloromethane (DCM) (EPA 3510 mod.) Sample 12" Clay Pipe was prepared by solvent extraction using DCM (EPA 3570 Draft). The extracts were dried with sodium sulfate and concentrated to known final volumes. A portion of each extract was spiked with internal standard and analyzed by gas chromatography with flame ionization detection (GC/FID) (EPA 8100 mod.)

An additional portion of each extract was silica gel fractionated (simulated distillation) into aliphatic, aromatic, and polar fractions (EPA 3630 mod.). The fractions were concentrated to a one milliliter, spiked with internal standard and analyzed by GC/FID (EPA 8100 mod.)

A chromatographic fingerprint was obtained from each sample using GC/FID, identifying and/or quantifying each of the compound classes: 1) monocyclic hydrocarbons (MAHs), 2) polycyclic aromatic hydrocarbons (PAHs), and, 3) aliphatic hydrocarbons and polar hydrocarbons.

The results of the analyses are included in this Addendum report, with expanded analytical data detailed in Appendix A of this Addendum report.

RESULTS

The GC/FID fingerprint data from the Kreher Park samples (NAPL/Water and 12" Clay Pipe) shows that the aromatic fraction (tar) of both samples is highly similar to the aromatic component in the previously examined NAPL sample from the former wood treatment operations in Kreher Park (MW-7). Particular observations drawn from the results are as follows:

- The GC/FID fingerprints of the whole extracts of the samples NAPL/Water and 12" Clay Pipe are highly similar (nearly identical), exhibiting a tar-like pattern.
- The GC/FID fingerprints of the whole extracts and aromatic fractions of the samples NAPL/Water and 12" Clay Pipe are similar to the whole extract and aromatic fraction GC/FID fingerprint of the NAPL sample from well MW-7.
- The GC/FID fingerprints of the aromatic fractions (tar) of the samples NAPL/Water and 12" Clay Pipe are different from the aromatic fractions in NAPL samples from wells MW-15 and EW-1 (on or below the Ashland NSP former MGP property).
- When compared with standard samples of known origin, the samples NAPL/Water and 12" Clay Pipe do not exhibit the characteristics of a carburetted water gas tar.
- The percentage of total aliphatic hydrocarbons (middle petroleum distillates) and total aromatic hydrocarbons (tar fraction) is very similar between the NAPL/Water and 12" Clay Pipe samples.
 - Results from the simulated distillation of the sample NAPL/Water indicates that the percentage of middle petroleum distillates is 19 percent, with 75 percent aromatic fraction.
 - Results from the simulated distillation of the sample 12" Clay Pipe indicates that the percentage of aliphatic hydrocarbons (middle petroleum distillates) averages 20.5 percent, with 80 percent aromatic fraction.

The actual GC/FID scans or fingerprints for each sample are shown in Appendix A of the Addendum report.

DISCUSSION OF RESULTS

Results of all testing indicated the following:

- 1) The aromatic component (tar) from samples NAPL/Water and 12" Clay Pipe from Kreher Park are highly similar to each other and to the tar component in the NAPL sample from Well MW-7. These results are consistent with the fact these samples were retrieved from locations proximal to each other.
- 2) The tar component in samples NAPL/Water and 12" Clay Pipe is different from the aromatic component in NAPL from wells MW-15 and EW-1. Compared with known standards, the tar from the tested samples is not identified as a carburetted water gas tar. In comparison, tars from wells MW-15 and EW-1 have been identified as carburetted water gas tars (refer to NAPL Report).
- 3) The quantity (percentage) of aliphatic compounds in samples NAPL/Water and 12" Clay Pipe are highly similar to each other and are different from NAPL samples derived from wells MW-15 and EW-1. Sample NAPL/Water consists of 19% middle petroleum distillate, with 75% aromatic (tar) fraction. In sample 12" Clay Pipe, 20.5% is middle petroleum distillate, with 80% aromatic (tar) fraction. These proportions bear similarity to those found in the sample from Well MW-7: middle petroleum distillate 28%, aromatic fraction 65%.

CONCLUSIONS

Results of testing and analysis of samples retrieved from Kreher Park in Ashland, Wisconsin (NAPL/Water and 12"Clay Pipe) are consistent and predictable. Whole extracts, aromatic and aliphatic fractions of samples NAPL/Water and 12" Clay Pipe are highly similar to each other. The tar contamination present in the samples is highly similar in composition to the tar found in the NAPL material from Kreher Park (MW-7 sample). Based upon previous analysis and comparison of the well MW-7 NAPL sample against known standards, results indicate that the tested samples are not carburetted water gas tars. Tars associated with samples NAPL/Water and 12" Clay Pipe and the NAPL sample from well MW-7 are likely from the same source. This result is highly consistent with the fact that the all samples originated from Kreher Park and were consequently affected by operations on this property.

Testing and analysis of the samples from Kreher Park also indicate that the tar is from a separate source from NAPL samples retrieved from wells MW-15 and EW-1. The tar component in the well samples from MW-15 and EW-1 is dissimilar to the tar component in samples NAPL/Water and 12" Clay Pipe.

Laboratory analysis of the aliphatic (oil fraction) and aromatic (tar) fractions of the samples NAPL/Water and 12" Clay Pipe reveal that the samples are similar to each other and to the NAPL sample from well MW-7. The samples are dissimilar to NAPL samples previously retrieved and tested from wells MW-15 and EW-1, in terms of percent fractions. This is consistent with evidence indicating that the sources of the contamination for the Ashland former MGP site and Kreher Park are separate and distinct.

Based on the results of analyses performed and in comparison with reference standards, GTI concludes that the tar component in the samples from the Kreher Park (NAPL/Water and 12" Clay Pipe) and the tar component in the NAPL material from well MW-7 (located within Kreher Park) are highly similar and from the same source. The tar contained in the samples is dissimilar to the carburetted water gas tar component in the NAPL samples from wells on the NSP Ashland Property, MW-15 and EW-1. The percent aliphatic fraction in samples NAPL/Water and 12" Clay Pipe are also similar to the NAPL sample from well MW-7. As concluded in the NAPL Report, the NAPL material from well MW-7 is consistent with wood treatment activities reportedly conducted at Kreher Park.

APPENDIX A

Environmental Forensic Report

Hydrocarbon
Fingerprinting
Former MGP Site,
Ashland, WI

Gas Technology Institute 1700 S. Mt. Prospect Road Des Plains, IL 60018

Report By:

META Environmental, Inc. 49 Clarendon Street Watertown, MA 02472

March 29, 2001

identifying and allocating sources of pollutants in complex environments.

Final Laboratory Report

META Environmental, Inc. 49 Clarendon Street Watertown, MA 02472

Phone: 617-923-4662 617-923-4610 Fax: e-Mail: metaenv@aol.com

Certification

This certifies that this package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed herein. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Director and Quality Assurance Officer, as verified by the following signatures.

David R. Craig

Laboratory Director, META Environmental, Inc.

Quality Assurance Officer, META Environmental, Inc.

3/30/01

105001 rpt 0301, 03/30/01

\\Zpen03\company\PROJECTS\lgt\l05001 rpt 0301.doc

Page 2

Sample Delivery Group Narrative

Project:

Ashland MGP Site Forensic Analyses

Client:

Gas Technology Institute 1700 S. Mt. Prospect Road Des Plains, IL 60018

Report Contact:

Dr. Diane Saber

Date of Receipt:

03/01/01

Sample Summary:

The samples received for this project are summarized in the attached sample login forms.

META Project Number:

105001-60

Chain of Custody

Samples were received in good condition on March 1st, 2001. The internal temperature of the shipment container was 2.5°C upon receipt.

Internal chain of custody procedures were followed after sample receipt. Samples were stored in a locked refrigerator. A sample custody logbook contains the record of sample removal from the secure sample storage area to the sample preparation laboratory. The custody record for the sample extracts is present on the sample extraction logbook page.

The disposal of samples and extracts will be authorized 1 month after the release of this data report. Sample disposal will be documented.

Page 3

Methods

Sample NAPL/Water was prepared by liquid:liquid extraction using dichloromethane (DCM) (EPA 3510 mod.) Sample 12" Clay pipe was perpared by solvent extraction using DCM (EPA 3570 Draft). The extracts were dried with sodium sulfate and concentrated to known final volumes. A portion of each extract was spiked with internal standard and analyzed by GC/FID (EPA 8100 mod.)

An additional portion of each extract was silica gel fractionated into aliphatic, aromatic, and polar fractions (EPA 3630 mod.). The fractions were concentrated to a one milliliter, spiked with internal standard and analyzed by GC/FID (EPA 8100 mod.)

Results

Hydrocarbon fingerprints for whole, aliphatic, aromatic, and polar organic fractions are presented in Appendix B.

Sample results are presented in summary forms (CLP Form 1 equivalent) in Appendix C.

Quality Control

Analyte Flags

The detection limits were determined as the sample equivalent of the lowest linear initial calibration standard. Analytes measured between 50% and 100% of the lowest standard were reported as "estimated" and flagged with the letter "J." No value was reported above the calibration range. Undetected analytes were flagged with the letter, "U." Analytes marked with a "B" were detected in the associated blank and should be reviewed for a possible positive bias. None of these deviations were thought significant enough to compromise the integrity of the reported values.

Holding Times

All samples were extracted within holding times. All samples and extracts were stored at 4°C ± 2°C prior to extraction and analysis. All extracts were analyzed within 40 days of sample preparation.

Surrogate Spikes

Extraction surrogates were added to the aqueous samples prior to extraction. Recoveries and

105001 rpt 0301, 03/30/01 \\Zpen03\company\PROJECTS\\gr\\105001 rpt 0301.doc

Page 4

QC limits for all surrogates are reported with the sample results. All surrogate recoveries were within QC limits with exceptions. Because of 25-fold dilution and matrix interference, recovery of the surrogate compound, 2-fluorobiphenyl, was above the QC limit.

Blanks

Sample Water/NAPL was associated with an extraction blank containing toluene. This analyte in the affected sample was flagged with the letter "B". Any extracts with concentrations of this analyte less than 5 times greater than that in the blank should be reviewed for positive bias.

Internal Standards

Internal standards were recovered within acceptable QC limits (85%-115%) relative to the continuing calibration standard with exceptions. Any analytes associated with internal standards outside of these limits were externally calculated.

Duplicate Samples

The %D of the duplicate sample was within QC limits (<50%) for all analytes.

Interpretation

The GC/FID fingerprints of the whole, aliphatic, and aromatic portions of the two samples, Water/NAPL and 12" Clay Pipe, were very similar. Both samples exhibited characteristics of pyrogenic and petrogenic substances, with the pyrogenic portion predominant. The substantial amounts of parent PAHs (e.g., naphthalene, phenanthrene, pyrene) indicated the presence of tar. However, the unresolved complex mixture (UCM or "hump") centered around about 17 minutes and the numerous small peaks from about 10 minutes to about 25 minutes indicated the presence of a middle distillate of petroleum.

The aliphatic fractions of both samples showed a middle distillate of petroleum. The low abundance of normal alkanes relative to the isoprenoid hydrocarbons, pristane and phytane, indicated moderate weathering.

The whole, aliphatic, and aromatic fingerprints for samples Water/NAPL and 12" Clay Pipe are very similar to those of sample MW-7 (reported Dec. 14, 1999). It is likely that these samples share a common source.

Table 1 presents the total hydrocarbon concentrations of the whole, aliphatic, and aromatic portions of each sample. The results for sample MW-7 are included for comparison.

It is important to note that samples MW-7 and Water/NAPL consisted mostly of water with sheens and small droplets of NAPL. The entire sample was extracted and then a portion of each extract was evaporated to dryness and the residue weighed. All concentrations have been calculated and are reported relative to the residue weight of sample. Because the weights and

volumes of the residues are so small in some cases, and because some portion of the volatile fraction of the organic material is lost on evaporation, the residue weights can be under- or over-estimated. The resulting concentrations are consequently biased. For example, the TEH concentration for sample MW-7 of 1,270,000 mg/kg is impossible because it is greater than one million parts per million. However, the relative amounts of total, aliphatic, and aromatic fractions, expressed as percentages, remain accurate. For example, the sum of the aliphatic, aromatic, and polar fraction concentrations for sample Water/NAPL is 643,900 mg/kg which is 98.4% of the TEH for that sample, as expected.

Finally, relatively low amounts of some compounds were detected in the polar fractions of each sample. However, most of material in the polar fractions was aromatic compounds that were not fully recovered in the aromatic fraction. The polar fractions of samples Water/NAPL and 12" Clay Pipe were very similar except that the 12" Clay Pipe sample contained two large peaks at about 32 minutes. These compounds may be fecal sterols, indicators of raw sewage. However, this identification should be confirmed by GC/MS analysis.

Sample	TEH (mg/kg)	Aliphatic (mg/kg)	Aromatic (mg/kg)	% Aliphatic	% Aromatic
MW-7*	1,270,000	350,000	830,000	28	65
Water/NAPL*	654,000	122,000	488,000	19	75
12" Clay Pipe	42,800	9,030	34,100	21	80
12" Clay Pipe Dup	43,500	8,870	34,100	20	80

References

- META Environmental, Inc., Laboratory Quality Assurance Plan, April 1999.
- Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition, May 1997.

Appendix A Chains of Custody

META ENVIRONMENTAL SAMPLE RECEIPT

Lati ID	Feld ID	Matrix	Analysis	Date Sampled	Date Received	Client/ Project	Comainer/ Storage
IG010301-01	Water/NAPL	NAPL	2006/4007	02/20/01	03/01/01	105001-60	1 ltr jar
IG010301-02	12" Clay-pipe	Soil	2508/4007	02/21/01	03/01/01	105001-60	8 oz jar

Paina 03/01/01

CHAIN OF CUSTODY RECORD

Job No. 05644 - 097

CHAIN OF CUS	STODY RECO	RD			
GENERATOR INFORMATION		SAMPL	E INFORM	IATION	
Facility NSP - Ashland IGO10301	No.	DEPTH NA	TYPE Conl	2/20/01	TIME
Address TG 010301					
Telephone ()	THE STATE STATES AND STATES AS				
COLLECTOR INFORMATION		Recide	25%	<u>+</u>	
Collected by Ben Nelson c/s URS					
Address 5250 E. Terrace Or. Sta I					B.O. B.O. B.O. B. B.O. B. B.O. B.O. B.O
Madison W1 53718					
Telephone (608) 244-5656					
Field Conditions/Remarks # Analyze for Dave Training (hits-medium)		8100 -	fingerprin	nt. (Contact 6
SAMPLE AL					
Address			ceived Inta ceived dam on back)		nissing
Telephone ()	(Signature)			(Date)
CHAIN OF P	OSSESSION				
Relinquished by: Date Time (Signature)	Received by: (Signature)		Date	Tin	ne
1. Wh Joll 2-28-01 1515			dim rows		
2.	Rainal	uehn	03/01/0	1 950	n.
3.					AUD TH.

Appendix B GC/FID Fingerprints

ISI - 2,4-difluorotoluene

IS2 - o-terphenyl

SSI - fluorobenzene

SS2 - 2-fluorobiphenyl

SS3 - 5a-androstane

Field ID:

Water/NAPL

Laboratory ID: IG010301-01

Method:

IS1 - 2,4-difluorotoluene

IS2 - o-terphenyl

SSI - fluorobenzene

SS2 - 2-fluorobiphenyl

SS3 - 5a-androstane

Field ID:

Water/NAPL

Laboratory ID: IG010301-01PF

Method:

ISI - 2,4-difluorotoluene

IS2 - o-terphenyl

SSI - fluorobenzene

SS2 - 2-fluorobiphenyl

SS3 - 5a-androstane

Field ID:

Water/NAPL

Laboratory ID: IG010301-01DF

Method:

ISI - 2,4-difluorotoluene

IS2 - o-terphenyl

SSI - fluorobenzene

SS2 - 2-fluorobiphenyl

SS3 - 5a-androstane

Field ID:

Water/NAPL

Laboratory ID: IG010301-01MF

Method:

ISI - 2,4-difluorotoluene

IS2 - o-terphenyl

SSI - fluorobenzene

SS2 - 2-fluorobiphenyl

SS3 - 5a-androstane

Field ID: 12" Clay Pipe Laboratory ID: IG010301-02

Method:

ISI - 2,4-difluorotoluene

IS2 - o-terphenyl

SSI - fluorobenzene

SS2 - 2-fluorobiphenyl

SS3 - 5 \a-androstane

Field ID:

12" Clay Pipe

Laboratory ID: IG010301-02PF

Method:

MET4007D -

ISI - 2,4-difluorotoluene

IS2 - o-terphenyl

SS1 - fluorobenzene

SS2 - 2-fluorobiphenyl

SS3 - 5 a-androstane

Field ID:

12" Clay Pipe

Laboratory ID: IG010301-02DF

Method:

ISI - 2,4-difluorotoluene

1S2 - o-terphenyl

SSI - fluorobenzene

SS2 - 2-fluorobiphenyl

SS3 - 5 a-androstane

Field ID:

12" Clay Pipe

Laboratory ID: IG010301-02MF

Method:

MET4007D -

Appendix C Chemical Concentrations

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

Field ID.	Material	Preparation Method:		Solvent Ext (EPA3510 mod.)	
Field ID:	Water/NAPL	Cleanup Method(s):				
Client:	GTI	Analysis Method:		GC/FID (EPA	8100 Mod.)	
Project:	Ashlend	Matrix:		Water		
		Preservation:		None		
Lab ID:	IG010301-01	Decented:		No		
File ID:	13MARR04.D					
		Sample Size:		1000	0	
Date Sampled:	2/20/01	%Solid:		100%		
Date Received:	3/1/01	Extract Volume:		25	mL	
Onte Prepared:	3/1/01	Prop DF:		1		
Date Cleanup:		Analysis DF:		1		
Date Analyzed:	3/13/01	Injection Volume:		0.001	mL	
Instrument:	GC_3					
Operator:	DRC	Batch QC:		IG010301-AB		
		Concentration		RL	DL	
Annhea:		mg/kg	Q	mg/kg	mg/kg	Comments
Analyte:						- Committee
TARGET COMPO	UNDS:					
Benzene		774		2.06	1.04	
Toluene		191	В	2.08	1.04	
Ethylbenzene		1,440		2.08	1.04	
m/p-Xylene		910		2.08	1.04	
Styrene		258		2.08	1.04	
o-Xylene		935		2.08	1.04	
lappropyttoluene		223		2.08	1,04	
Propyiberizene		112		2.08	1.04	
1,3,5-Trimethylben	zene	522		2.08	1.04	
1,2,4-Trimethylben	zene	963		2.08	1.04	
sec-Butylbenzene		69.5		2.08	1.04	
p-Isopropyttoluene		759		2.08	1.04	
n-Butylbenzene			U	2.08	1.04	
Naphthalene		31,000	D	2.08	1.04	
2-Methylnaphthale	ne	18,700	D	2.08	1.04	
1-Methylnaphthale	ne	15,100	D	2.08	1.04	
Acenaphthylene		3,820		2.08	1.04	
Acensphthene		10,500	D	2.08	1.04	
Dibenzofuntri		2,520		2.06	1.04	
Fluorene		6,150		2.08	1.04	
Phenenthrene		19,100	D	2.08	1.04	
Anthrecene		5,940		2.08	1.04	
Fluorenthene		6,970		2.08	1.04	
Pyrene		11,100	D	2.08	1.04	
Benz(a)anthracene)	4,580		2.08	1.04	
Chrysene		3,360		2.08	1.04	
Banzo(b)fluoranthe	rne	1,550		2.08	1.04	
Benzo(k)fluoranthe	rne .	1,820		2.08	1.04	
Benzo(a)pyrana		3,260		2.08	1.04	
Indeno(123-od)pyn	ene	779		2.08	1.04	
Dibenz(a,h)anthred		163		2.08	1.04	
Beruzo(g,h,i)perylet	NO	708		2.08	1.04	
Total MAH		4,510				
Total PAH		145,000				
IVM PAI		Calculations based on	nesidue	weight (0.12%)		
Surrogates		%R		Min	Max	
Surrogenia Fluorobenzene (SS	24)	35%		50%	150%	
2-Fluorobiphenyl (8		1		50%	120%	
A T INVESTMENT (19) (C	rwe/			50%	120%	

Qualifiers:

Analyte detected in the blank D Analyte reported from a diluted extract Undetected above the detection limit u

Estimated value detected between the reporting and detection limits

Estimated value detected above calibration range

RL Reporting limit is the sample equivalent of the lowest linear calibration concentration

Estimated detection limit is 50% of the RL Total MAH does not include C3- or C4-benzenes

Total PAH does not include Dibenzofuran

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

		Preparation Method:	Salvant Co.	(EPA3510 mod.	
Field ID:	Water/NAPI	Cleanup Method(s):)
t test of the .	- A B COLLINA L	Ceenup Method(\$):	Stick Gel (E	PA 3830 mod.)	
Client:	GΠ	Analysis Method;	GC/FID (EP	A 8100 Mod.)	
Project:	Ashland	Matrix:	Water		
		Preservation:	None		
Lab ID:	IG010301-01PF	Decented:	No		
File ID:	13MARROS.D	Samuel Stand			
Date Sampled:	2/20/01	Semple Size: %Solid:	1000	0	
Date Received:	3/1/01	Extract Volume:	25	mL	
Date Prepared:	3/1/01	Prop DF:	1	mL	
Date Cleanup:	3/13/01	Analysis DF:	1		
Date Analyzed:	3/13/01	Injection Volume:	0.001	mL	
Instrument	GC 3	injection voidine.	U.DUT	ML	
Operator:	DRC	Batch QC:	(G010301-A	9	
4		Concentration	RL	DL	
Analyte:		mg/kg	Q mg/kg	mg/kg	Comments
TARGET COMPO	UNDS:				
Benzene		3.61	2.08	1.04	
Yoluene		9.28	B 2.08	1.04	
Ethylbenzene			U 2.08		
m/p-Xylene			U 2.08		
Styrene			U 2.08		
o-Xylene			U 2.08		
laopropyttoluene			U 2.08		
Propyfbenzene			U 2.08	***	
1,3,5-Trimethylben	tene		2.08		
1,2,4-Trimethylbeni	zene		U 2.08		
sec-Butythenzene		1	U 2.08	1.04	
p-isopropyttoluene			2.08	1.04	
n-Butytbenzene			2,08		
Naphthalene			2.06		
2-Methylnaphthalen	10		2.08	1.04	
1-Methylnephthalen	10		3.08	1.04	
Acanaphthylens			2.08	1.04	
Acenaphthene			2.08	1.04	
Dibenzofuren		1	J 2.08	1.04	
Fluorene		ı	2.08	1.04	
Phenenthrene			2.08	1.04	
Anthracene		(2.08	1.04	
Fluorenthene		1		1.04	
Pyrene		(2.08	1.04	
Benz(a)anthracene		(2,08	1.04	
Chrysene		ι	2.08	1.04	
Benzo(b)fluoranther		(2,08	1.04	
Benzo(k)fluoranther	10	· · · · · · · · · · · · · · · · · · ·	2.08	1.04	
Berizo(a)pyrene			2.06	1.04	
Indeno(123-cd)pyre	rje		J 2.08	1.04	
Dibenz(a,h)anthrace	ene	ι	2.08	1.04	
Benzo(g,h,l)perylend		l		1.04	
Rumantes		Calculations based on resid			
Surrogates		%R	Min	Max	
Fluorobenzene (SS1		1%	50%	150%	
2-Fluorobiphenyl (8)		0%	50%	120%	
5-siphe-Androstane	(993)	72%	50%	120%	

Qualifiera:

Analyte detected in the blank 8

D Analyte reported from a diluted extract

u Undetected above the detection limit

E

Estimated value detected between the reporting and detection limits
Estimated value detected above calibration range
Reporting limit is the sample equivalent of the lowest linear calibration concentration
Estimated detection limit is 50% of the RL RL

EDL

Solvent Ext. (EPA3510 mod.)

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

Preparation Method:

		Preparation medica.		DOITEIR EAS.	(EFA3310 1100.)	
Field ID:	Water/NAPL	Cleanup Method(s):		Silica Gel (E	PA 3630 mod.)	
Client:	GTI	Analysis Method;		GC/FID (EP	A 8100 Mod.)	
Project.	Ashland	Matrix		Water		
		Preservation:		None		
Lab ID:	IG010301-01DF	Decented:		No		
File ID:	13MARR06.D					
W 10.	70707	Sample Size:		1000	0	
Date Sampled:	2/20/01	%Solid:		100%	•	
Date Received:	3/1/01	Extract Volume:		25	mL	
Date Prepared:	3/1/01	Prep DF:		1		
Date Cleanup:	3/13/01	Analysis DF:		i		
Date Analyzed:	3/13/01	Injection Volume:		0.001	mL	
nstrument;	GC_3	injacaon voidine.		0.001	1116	
	DRC	Batch QC:		IG010301-A		
Operator:	DRC	parion QC.		10010301-7	•	
		Concentration		RL	DL	
knalyte:		mg/kg	Q	mo/kg	mg/kg	Comment
TARGET COMPO	UNDS:					
enzene		78.2		2.0	8 1.04	
Coluene		150	В	2.00		
thylbenzene		586		2.08		
n/p-Xylene		382		2.00		
Styrane		163		2.00		
-Xylene		358		2.00		
sopropytoluene		109		2.00		
ropylbenzene		79.0		2.00		
1,3,5-Trimethylber	Zena	321		2.00		
.2.4-Trimethylber		591		2.00		
ec-Butylbenzene	Lend	23.5		2.08		
-Isopropyttoluene		583		2.08		
Butylbenzene		307		2.08		
		26,300	D	2.00		
laphthelene		18,200	D	2.00		
Methylnaphthale		14,000	D	2.00		
-Methylnaphthale	ne		U			
conaphthylene		2,180	-	2.00		
cenaphthere		10,300	D	2.08		
Mbenzofuran		1,970		2.00		
luorena		4,350		2.08		
henanthrene		18,500	D	2.08		
unthrecene		4,310		2.08		
luoranthene		5,620		2.08		
утипе		10,800	D	2.08		
Benz(a)anthracere		3,310		2.08		
hrysene		2,500		2.08		
Senzo(b)fluoranthe	erier	1,250		2.00		
enzo(k)fluoranthe	ne	1,380		2.08	1.04	
lenzo(a)pyrene		2,440		2.08	1.04	
ndeno(123-cd)pyn	pne	705		2.08	1.04	
Monz(a,h)anthrac		143		2.00	1.04	
enzo(g,h,i)peryle		622		2.08		
Surrogates		Calculations based on r	residue	weight (0.12%	6) Max	
luorobenzene (68	241	5%		50%	150%	
INVESTIGATION (OC				50%	120%	
-Fluorobiphenyl (263/					

Qualifiers:

B Analyte detected in the blank

D Analyte reported from a diluted extract
U Undetected above the detection limit

J Eatimated value detected between the reporting and detection limits

E Estimated value detected above calibration range

RL Reporting limit is the sample equivalent of the lowest linear calibration concentration

EDL Estimated detection limit is 50% of the RL

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

		Preparation Method:		Solvent Ext. (EPA3510 mod.)	
Field ID:	Water/NAPL	Cleanup Method(s):				
Client:	GTI	Analysis Method;		GC/FID (EPA	8100 Mod.)	
Project:	Ashland	Matric		Water		
		Preservation:		None		
Lab ID:	IG010301-01MF	Decanted:		No		
File ID:	13MARR07.D					
		Sample Size:		1000	0	
Date Sampled:	2/20/01	%Solid:		100%		
Date Received:	3/1/01	Extract Volume:		25	mL	
Date Prepared:	3/1/01	Prep DF:		1		
Date Cleanup:		Analysis DF:		1		
Data Analyzed:	13 Mar 2001 9:29 pm	Injection Volume:		0.001	mL	
Instrument:	GC_3					
Operator:	DRC	Betch QC:		IG010301-AB		
		Concentration		RL	DL	
Analyte:		mg/kg	a	mg/kg	mg/kg	Comments
TARGET COMPO	UNDS:					
Benzene			U	2.08	1.04	
Totuene			B	2.08	1,04	
Ethytherizens			U	2.08	1.04	
n/p-Xylene		5.97		2.08	1.04	
Styrene			U	2.08	. 1.04	
o-Xylene			n	2.08	1.04	
sopropyttoluene			U	2.08	1.04	
Propyibenzene			U	2.08	1.04	
1,3,5-Trimethylben			U	2.08	1.04	
1,2,4-Trimethylben	Zerie		U	2.08	1.04	
ec-Butylbenzene			n	2.08	1.04	
-Isopropyttokuene			U	2.08	1.04	
-Butylbenzene			U	2.08	1.04	
laphthalene		171		2.08	1.04	
-Methylnaphthale		135		2.06	1.04	
-Methylnaphthale	ne	123		2.08	1.04	
voenaphthylene		189		2,08	1,04	
Voensphithene Olbenzofuren		112 28.1		2.08	1.04	
Juorene		58.8		2.08	1.04	
henenthrene		269		2.08	1.04	
vithracena		91.1		2.08	1.04	
luoranthene		121		2.08	1.04	
yrana		186		2.08	1,04	
enz(a)anthracene		227		2.08	1.04	
chrysene		134		2.08	1.04	
lenzo(b)fluorantha	na .	97.5		2.08	1.04	
ienzo(k)fluoranthe		104		2.08	1.04	
enzo(a)pyrene		401		2.08	1.04	
ndeno(123-cd)pyra	orio e	91.2		2.08	1.04	
Hoenz(a,h)anthrac		19.5		2.08	1.04	
enzo(g,h,l)peryler		128		2.08	1.04	
and an indian hour		Calculations based on r	esidue			
urrogates		%R		Min	Max	
luorobenzene (SS		0%		50%	150%	
-Fluorobiphenyl (S		0%		60%	120%	
-alpha-Androstane	(893)	0%		50%	120%	

Qualifiers:

B

Analyte detected in the blank Analyte reported from a diluted extract Undetected above the detection limit D U

Estimated value detected between the reporting and detection limits

Estimated value detected above calibration range

Reporting limit is the sample equivalent of the lowest linear calibration concentration Estimated detection limit is 50% of the RL RL

EDL

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

Field ID:	12" Clay Pipe	Preparation Method: Cleanup Method(s):		SOIVERT EXT. (E	PA3570 Draft)	
Client:	GTI	Analysis Method:		GC/FID (EPA	B100 Mod)	
	Ashland	Matrix:		Soil Soil	a roo moa.)	
Project:	Celuelin	Preservation:		None		
LAD IO:	IG010301-02	Decanted:		No		
File ID:	13MARR08.D					
rae io.	1360/11/00.2	Sample Size:		2.038	0	
Date Sampled:	2/21/01	%Solid:		59%		
Date Received:	3/1/01	Extract Volume:			mL	
Date Prepared:	3/2/01	Prep DF:		1		
Date Cleanup:	32 01	Analysis DF:		1		
Date Analyzed:	13 Mar 2001 10:33 pm	Injection Volume:			mL	
Instrument	GC_3					
Operator:	DRC	Batch QC:		IG010302-SB		
Operator.	UNC					
		Concentration		RL	DL	
Armlyte:		mg/kg	Q	mg/kg	mg/kg	Comments
TARGET COMPO	UNDS:					
Benzene		14.6		0.17	0.08	
Toluene		6.71		0.17	0.08	
Ethylbenzene		106		0.17	0.08	
m/p-Xylene		80.9		0.17	0.08	
Styrene		22.7		0.17	0.08	
o-Xylene		41.7		0.17	0.08	
Isopropyttoluene		22.7		0.17	0.08	
Propylbenzene		11.1		0.17	80.0	
1,3,5-Trimethylben	7000	53.4		0.17	0.08	
1,2,4-Trimethylben		91.6		0.17	0.08	
sec-Butylbenzene	2010	4.04		0.17	0.08	
p-teopropyttoluene		56.4		0.17	0.08	
n-Butylbenzena		141		0.17	0.08	
Naphthalene		1,840	D	0.17	0.08	
2-Methylnaphthale	^*	581	D	0.17	0.08	
1-Methylnaphthale		1.030	D	0.17	0.08	
Acenaphthylene		156		0.17	0.08	
Acenaphthana		795	D	0.17	0.08	
Dibenzofuran		217		0.17	0.08	
Fluorene		550		0.17	80,0	
Phenanthrene		1,300	D	0.17	0.08	
Anthracene		637		0.17	0.08	
Fluoranthene		457		0.17	0.08	
Pyrene		713	D	0.17	0.08	
Benz(a)anthracene		389		0.17	0.08	
Chrysene		305		0.17	0.00	
Benzo(b)fluoranthe	ene	130		0.17	0.08	
Benzo(k)fluoranthe		155		0.17	0.08	
Benzo(a)pyrene		272		0.17	0.05	
Indeno(123-cd)pyr	ene	67.3		0.17	0.08	
Dibertz(a,h)anthrac		14.1		0.17	0.08	
Benzo(g,tr,i)peryler		69.6		0.17	0,08	
		272				
Total MAH Total PAH		9,360				
		%R		Min	Max	
Surrogates Fluorobenzene (SS	241	71%		50%	150%	
2-Fluorobiphenyl (113%		50%	120%	
5-alpha-Androstan		123%		50%	120%	

Qualifiers:

Analyte detected in the blank

D Analyte reported from a diluted extract Undetected above the detection limit U

Estimated value detected between the reporting and detection limits

Estimated value detected above calibration range

Reporting limit is the sample equivalent of the lowest linear calibration concentration

Estimated detection limit is 50% of the RL

Total MAH does not include C3- or C4-benzenes Total PAH does not include Dibenzofuran

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

		Preparation Method:		Solvent Ext. (EPA3570 Draft	1
Field ID:	12" Clay Pipe	Cleanup Method(s):				
Client:	GTI	Analysis Method:		GC/FID (EPA	8100 Mod \	
Project:	Ashland	Matrix:		Water	0100 MOU.)	
Lab ID:		Preservation:		None		
File ID:	IG010301-02PF 13MARR09.D	Decented:		No		
THE ID.	ISMARROS.D	Sample Size:		2.038		
Date Sampled:	2/21/01	%Solid:		59%	9	
Date Received:	3/1/01	Extract Volume:			mL	
Date Prepared:	3/1/01	Prep OF:		1		
Date Cleanup:		Analysis DF:		1		
Date Analyzed:	13 Mar 2001 11:37 pm	Injection Volume:		0.001	mL	
Instrument:	GC_3					
Operator:	DRC	Batch QC:		Soil Blank		
		Concentration		RL	DL	
Analyte:		mg/L	Q	mg/L	mg/L	Comments
						Community
TARGET COMPOL	INDS:			•		
Benzene Toluene		0.11	J	0.17	0.08	
Ethythenzene			U	0.17	0.08	
m/p-Xylene			ņ	0.17	0.08	
Styrene			U	0,17	0.08	
o-Xylene			Ü	0.17	0.08 0.08	
leopropyitoluene			U	0.17	0.08	
Propyibenzene			U	0.17	0.08	
1,3,5-Trimethylbenz			U	0.17	0.08	
1,2,4-Trimethylbenz	ene		Ų	0.17	0.08	
sec-Butylbenzene			U	0.17	0.08	
p-isopropyttoluene n-Butylbenzene			U	0.17	0.08	
Naphthalene			U	0.17	0.08	
2-Methylnaphthalen			u	0.17	0.08	
1-Methylnaphthalere			u	0.17	0.08	
Acenephthylene			U	0.17	0.08	
Acenaphthene			Ų	0.17	0.08	
Dibenzafuran			U	0.17	0.08	
Fluorene			U	0.17	0.08	
Phononthrone			U	0.17	0.08	
Anthrecene			U	0.17	0.08	
Fluoranthene			U	0.17	0.06	
Pyrene Benz(a)anthrecene			U	0.17	0.08	
Chrysene			U	0.17	0.08	
Benzo(b)fluoranthen			U	0.17	0.08	
Benzo(k)fluoranthene			Ü	0.17	0.08	
Benzo(a)pyrene			Ŭ	0.17	0.08	
Indeno(123-cd)pyren	•		U	0,17	0.08	
Dibenz(a,h)enthraces			U	0,17	0.08	
Benzo(g,h,l)perylene			U	0.17	0.08	
Surrogates		%R		Min	Max	
Fluorobenzene (SS1)		30%		50%	150%	
2-Fluorobiphenyl (SS		0%		80%	120%	
5-alpha-Androstane (66%		50%	120%	

Qualifiers:

Analyte detected in the blank
Analyte reported from a diluted extract
Undetected above the detection limit D U

Estimated value detected between the reporting and detection limits

Estimated value detected above calibration range

RL Reporting limit is the sample equivalent of the lowest linear calibration concentration

Estimated detection limit is 50% of the RL

Solvent Ext. (EPA3570 Dreft)

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

Preparation Method:

		reparation watrog.		DOIVERII EXI.	(ELV3210 DUBLE)	
Field ID:	12" Clay Pipe	Cleanup Method(s):				
Client	GTI	Analysis Method:		GC/FID (EPA	A100 Mad	
Project:	Ashland	Matrix:		Water	STOU MOD.)	
riojou.	Astracio	Preservation:		None		
Leb ID:	IG010301-02DF	Decanted:				
File ID:	13MARR10 D	Decanted:		No		
FRE IU:	I3MARR1U.D					
		Sample Size:		2.038	9	
Date Sampled:	2/21/01	%Solid:		59%		
Date Received:	3/1/01	Extract Volume:		2	mL	
Date Prepared:	3/1/01	Prep DF:		1		
Date Cleanup:		Analysis DF:		1		
Date Analyzed:	14 Mar 2001 12:42 am	Injection Volume:		0.001	mL	
Instrument:	GC_3					
Operator:	DRC	Betch QC:		Soll Blank		
		Concentration		RL	DL	
Analyte:		mg/L	Q	mg/L	mg/L	Comments
TARGET COMPO	UNDS:					
Benzene		1.38		0.17	0.08	
Toluene		8.55		0.17		
Ethylbenzene		32.7		0.17		
m/p-Xylene		25.7		0.17		
Styrene		14.5		0.17		
o-Xylene		20.3		0.17	7	
Isopropyltoluene		8.68		0.17	0.08	
Propylbenzene		5.83		0.17	0.08	
1,3,6-Trimethylben	7000	27.0		0.17		
1,2,4-Trimethylben		44.5		0.17	7.74	
sec-Butylbenzene	€ det uit				0.08	
		1.32		0.17	0.08	
p-Isopropyltoluene		42.7		0.17	0.08	
n-Butylbenzene		24.9		0.17	0.08	
Naphthalene		2,060	D	0.17	0.08	
2-Methylnaphthale		662		0.17	0.08	
1-Methylnaphthale	n●	1,280	D	0.17	0.08	
Acenaphthylene		94.1		0.17	0.08	
Acenaphthene		1,020	D	0.17	0.08	
Dibenzofuren		156		0.17	0.08	
Fluorene		361		0.17	0:08	
Phenanthrene		1,680	D	0.17	0.08	
Anthracene		387		0.17	0.08	
Fluorenthene		477		0.17	0.08	
Pyrene		916	D	0.17	0.08	
Benz(s)anthracene		275		0.17	0.08	
Chrysene		208		0.17	80.0	
Benzo(b)fluoranthe		95.5		0.17	80.0	
Benzo(k)fluorenthe	ne .	109		0.17	0.08	
Benzo(a)pyrene		183		0.17	0.06	
Indeno(123-od)pyre	ine	52.2		0.17	0.08	
Dibertz(a,h)anthrao		10.3		0.17	0.08	
Benzo(g.h.i)perylan		45.0		0.17	0.08	
Surrogales		%R		Min	Max	
Fluorobenzene (\$\$	1)	5%		50%	150%	
2-Fluorobiphenyl (S		81%		50%	120%	
5-siphe-Androstene		0%		50%	120%	
prie renationalité	(600)	074		30%	120%	

Qualifiers:

B Analyte detected in the blank
D Analyte reported from a diluted extract

U Undetected above the detection limit

Estimated value detected between the reporting and detection limits

E Estimated value detected above calibration range

RL Reporting limit is the sample equivalent of the lowest linear calibration concentration

EDL Estimated detection limit is 50% of the RL

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

		Preparation Method:		Solvent Ext. ((EPA3570 Draft)	
Field ID:	12" Clay Pipe	Cleanup Method(s):				
Client:	GTI	Analysis Method:		GC/FID (EPA	8100 Mod \	
Project:	Ashland	Matric:		Water		
		Preservation:		None		
Lab ID:	IG010301-02MF	Decanted:		No		
File ID:	13MARR11.D					
		Sample Size:		2.038	g	
Date Sampled:	2/21/01	%Solid;		59%		
Date Received:	3/1/01	Extract Volume:		2	mL.	
Date Prepared:	3/1/01	Prep DF:		1.		
Date Cleanup:		Analysis DF:		1		
Date Analyzed:	14 Mar 2001 1:46 am	Injection Volume:		0.001	mL	
Instrument	GC_3					
Operator:	DRC	Batch QC:		Soil Blank		
		Concentration		RL	DL	
Analyte:		mg/L	Q	mg/L	mg/L	Commenta
TARGET COMPO	IAIDD					
Benzens	UNUS:					
Toluene			U	0.17	0.08	
Ethylbenzene			u	0.17	0.08	
m/p-Xylene			u	0.17	0.08	
Styrene			u	0.17	0.08	
o-Xylene			Ü	0.17	0.08	
Isopropyttoluene			U	0,17	0.08	
Propylbenzene			U	0.17	0.08	
1,3,5-Trimethylben	rana		U	0.17	0.08	
1,2,4-Trimethylben			U	0.17	0.08	
sec-Butytbenzene			U	0.17	0.08	
p-isopropyitoluene			U	0.17	0.08	
n-Butylbenzene			u	0.17	0.00	
Naphthelene		11.6		0.17	0.08	
Z-Methylnaphthaler	10	4.35		0.17	0.08	
1-Methylnaphthaler		9,11		0.17	0.08	
Acenephthylene		10.6		0.17	0.08	
Acensphthena		9.06		0.17	0.08	
Dibenzoturan		0.75		0.17	0.08	
Fluorene		4.69		0.17	0.06	
Phenanthrene		23.0		0.17	0.08	
Anthracene		9.48		0.17	0.08	
Fluoranthene		10.9		0.17	0.08	
Pyrane		14.5		0.17	0.08	
Benz(a)anthrecene		16.9		0,17	0.08	
Chrysene		12.9		0.17	0.08	
Benzo(b)fluoranther		7.53		0.17	0.08	
Benzo(k)fluorenther	10	9.25		0.17	0.08	
Benzo(a)pyrene		26.3		0.17	0.08	
Indeno(123-cd)pyre		6.31		0.17	0.08	
Diberz(a,h)anthrace		1.10		0.17	0.08	
Benzo(g,h,i)peryleni		10.3		0.17	0.08	
Surrogates		%R		Min	Max	
Fluorobenzene (SS1	1)	0%		50%	150%	
2-Fluorobiphenyl (S:	\$2)	2%		50%	120%	
5-alpha-Androstane	(\$53)	0%		60%	120%	

Qualifiers;

Analyte detected in the blank 8 D

Analyte reported from a diluted extract Undetected above the detection limit 2

Estimated value detected between the reporting and detection limits

Estimated value detected above calibration range

Reporting limit is the sample equivalent of the lowest linear calibration concentration Estimated detection limit is 50% of the RL RL

Solvent Ext. (EPA3570 Draft)

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

Preparation Method:

Field ID:	12" Clay Pipe	Cleanup Method(s):		SOLVENT SXL (EPA35/U Uran)	
Client:	GTI	Analysis Method:		GC/FID (EPA	8100 Mod)	
Project:	Ashland	Matrix:		Soll	0 100 MOS.)	
Ciolect.	Сепини	Preservation:		None		
	Innana anh			No		
Lab ID: File ID;	IG010301-02Dup 13MARR12.D	Decented:		No		
		Sample Siza:		1.875	9	
Date Sampled:	2/21/01	%Solid:		59%		
Dute Received:	3/1/01	Extract Volume:		2	mL	
Date Prepared:	3/2/01	Prep DF:		1		
Date Cleenup:		Analysis DF:		1		
Date Analyzed:	14 Mar 2001 2:52 mm	Injection Volume:		0.001	mL	
Instrument:	GC 3			0.001	····	
Operator:	DRC	Batch QC:		1G010302-SB		
		Concentration		RL	DL	
Analyte:		mg/kg	Q	mg/kg	mg/kg	Comments
						•
TARGET COMPO	UNDS:					
Benzene		12.7		0.18	0.09	13.9%
Toluene		7.25		0.18	0.09	7.7%
Ethylbenzene		87.3		0.18	0.09	19.3%
m/p-Xylane		66,5		0.18	0.09	19.5%
Styrene		17.8		0.18	0.09	24,2%
o-Xylene		34.6		0.18	0.09	18.6%
isopropyttoluene		18,6		0.18	0.09	19.9%
Propylbenzene		9.01		0.18	0.09	20.8%
1,3,5-Trimethylban	zene	44.1		0.18	0.09	19.1%
1,2,4-Trimethylben	zene	76.5		0.18	0.09	18.2%
sec-Butylbenzene		3.47		0.18	0.09	15.2%
p-leopropyttoluene		54.9		0.16	0.09	19,0%
n-Butylberzene		119		0.18	0.09	16.9%
Naphthalene		1,860	D	0.18	0.09	1.1%
2-Methylnaphthaler	ne .	556	0	0.18	0.09	4.4%
1-Methylnephthaler		1,060	D	0.18	0.09	2.9%
Acenaphthylene		140		0.18	0.09	10.8%
Acenaphthene		820	D	0.18	0.09	3.1%
Diberzofuran		202		0.18	0.09	7.2%
Fluorene		445		0.18	0.09	21.1%
Phenanthrene		1.330	D	0.18	0.09	2.3%
Anthracene		442	-	0.18	0.09	19.4%
Fluoranthene		464	D	0.18	0.09	1.5%
Pyrene		722	D	0.18	0.09	1.3%
Benz(a)anthracene		327	-	0.18	0.09	17.3%
		255		0.18	0.09	17.0%
Chrysene Benzo(b)fluoranthe		116		0.18	0.09	11.4%
		135		0.18	0.09	13,5%
Benzo(k)fluoranthe	ne	226		0.18	0.09	18.5%
Benzo(a)pyrene		55.9		0.18	0.09	18.5%
Indeno(123-od)pyre		11.5			-1.	
Dibenz(a,h)anthrao				0.18	0.09	20.3%
Benzo(g,h,i)perylen		58.9		0.18	0.09	16.7%
Total MAH Total PAH		226 9,030				
Surrogates		. %R		Min	Max	
Fluorobenzene (SS	1)	57%		50%	150%	
2-Fluorobipheny! (\$		95%		50%	120%	
5-alpha-Androstane	하고 있다. Table 1988년 1988년 1982년 1월 1일	106%		50%	120%	

Qualiflers:

Analyte detected in the blank B

Analyte reported from a diluted extract D

Undetected above the detection limit

Estimated value detected between the reporting and detection limits

Estimated value detected above calibration range E

Reporting limit is the sample equivalent of the lowest linear calibration concentration RL

Estimated detection limit is 50% of the RL

Total MAH does not include C3- or C4-benzenes

Total PAH does not include Dibenzofuran

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

		Preparation Method:		shamed East /	FB44570 0	
Field ID:	12" Clay Pipe	Cleanup Method(s):	96	HABIR EXC. (EPA3570 Draft)	
		· · · · · · · · · · · · · · · · · · ·				
Client:	ĢΠ	Analysis Method:	GC	FID (EPA	8100 Mod.)	
Project:	Ashland	Matric	W	utor		
		Preservation:	No	ne		
Lub ID:	IG010301-02DupPF	Decented:	No			
File ID:	13MARR13.D					
		Sample Size:	1.8	75	9	
Date Sampled:	2/21/01	%Solid:	591	*		
Date Received:	3/1/01	Extract Volume:	2		mL	
Date Prepared:	3/1/01	Prep DF:	1			
Date Cleanup:		Analysis DF:	1			
Date Analyzed: Instrument:	14 Mar 2001 - 3:56 am	Injection Volume:	0.0	01	mL	
Operator:	GC_3 DRC					
Орегания.	DRC	Batch QC:	Sol	Blank		
		Concentration		RL.	DL	
Analyte:		mg/L	Q	mp/L	mg/t.	Comments
					mg/c	Commence
TARGET COMPOU	JNOS:					
Benzene		0.24		0,18	0.09	
Toluene		0.86		0,18	0.09	
Ethylbenzene			U	0.18	0.09	
m/p-Xylene			U	0.18	0.09	
Styrene			U	0.18	0.09	
o-Xylene			U	0.18	0.09	
Isopropyitoluene			U	0.18	0.09	
Propylbenzene			U	0.16	0.09	
1,3,5-Trimethylbena			U	0.18	0.09	
1,2,4-Trimethylberu	rene		U	0.18	0,09	
sec-Butylbanzene			U	0.18	0.09	
p-Isopropyftoluene			U	0.18	0.09	
n-Butylbenzene			U	0.18	0.09	
Naphthelene			U	0.18	0.00	
2-Methylnaphthalen 1-Methylnaphthalen			U	0.18	0,09	
Acenaphthylene			U	0.18	0.08	
Acenaphthene			U	0.18	0.09	
Dibenzofuran			U	0.18	0.09	
Fluorene			U	0.18	0.09	
Phenenthrene			U	0.18	0.09	
Anthrecene			Ü	0.18	0.09	
Fluoranthene			Ŭ	0.18	0.09	
Pyrene			Ü	0.18	0.09	
Benz(a)anthrecene			ŭ	0.18	0.09	
Chrysene			u	0.18	0.09	
Benzo(b)fluorunthen	•		U	0.18	0.09	
Benzo(k)fluoranthen	•	1	u	0.18	0.09	
Senzo(s)pyrene			U	0.18	0.09	
Indeno(123-cd)pyren			U	0.18	0.09	
Dibenz(a,h)anthrace			U	0.18	0.09	
Benzo(g.h.i)perylene			U	0.18	0.09	
Surrogates						
Fluoroberizena (SS1		%R		Min	Max	
2-Fluorobiphenyl (83		28%		50%	150%	
5-alpha-Androstane		0% 58%		50%	120%	
	(555)	06%		50%	120%	

Qualifiers:

B Analyte detected in the blank

Analyte reported from a diluted extract Undetected above the detection limit D

U

Estimated value detected between the reporting and detection limits

E Estimated value detected above calibration range

Reporting limit is the sample equivalent of the lowest linear calibration concentration Estimated detection limit is 50% of the RL. RL

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

		Preparation Method:		Solvent Ext. (EPA3570 Draft)	
Field ID:	12" Clay Pipe	Cleanup Method(s):				
Client	GTI	Analysis Method:		GC/FID (EPA	ESDO Med)	
Project:	Ashland	Matrix:		Water	\$100 MOD.)	
r rogards.	7 CHAIN	Preservation:		None		
Lab ID:	IG010301-02DupDF	Decanted:		No		
File ID:	13MARR14.D	Dominou.				
		Sample Size;		1.875	0	
Date Sampled:	2/21/01	% Solid:		59%		
Date Received:	3/1/01	Extract Volume:		2	mL	
Date Prepared:	3/1/01	Prep DF:		1		
Date Cleanup:		Analysis DF:		1		
Date Analyzed:	14 Mar 2001 5:00 am	Injection Volume:		0.001	mL	
Instrument:	GC_3					
Operator:	DRC	Batch QC:		Soil Blank		
		Concentration		RL	DL	
Analyte:		mg/L	Q	mg/L	mg/L	A
Pullety III.		mg/L	ч	nyg/t.	mg/L	Comments
TARGET COMPO	UNDS:					
Benzene			U	0.18	0.09	
Toluene		10.3		0.18	0.00	
Ethylbenzene		30.8		0.18	0.00	
m/p-Xylene		24.0		0.18	0.09	
Styrene		15.4		0.18	0.09	
o-Xylene		20.2		0.18	0.09	
Isopropyttoluene		8.33		0.18	0.09	
Propylbenzene		5.60		0.18	0.09	
1,3,5-Trimethylben	zene	26.8		0.18	0.09	
1,2,4-Trimethylben	zene	44.7		0.18	0.09	
sec-Butylbenzene			U	0.18	0.09	
p-isopropyttoluene		43.2		0.18	0.09	
n-Butylbenzene		26.2		0.18	0.09	
Naphthalene		2,000	D	0.18	0.09	
2-Methylnaphthaler		640		0.18	0.09	
1-Methylnaphthaler	10	1,260	D	0.18	0.09	
Acenaphthylena		105		0.18	0.09	
Acenaphthene Dibenzofuran		1,010 172	D	0.18	0.09	
Fluorene		437		0.18	0.09	
Phenanthrane		1,640	D	0.18	0.09	
Anthracene		387	-	0.18	0.09	
Fluoranthene		486		0.18	0.09	
Pyrene		683	0	0.18	0.09	
Benz(a)anthrecene		282		0.18	0.09	
Chrysene		214		0.18	0.09	
Benzo(b)fluoranthe	ne	90.2		0.18	0.09	
Benzo(k)fluoranther	ne	104		0.18	0.09	
Benzo(a)pyrene		185		0.18	0.09	
Indeno(123-od)pyre	ne	50.7		0.18	0.09	
Dibenz(a,h)anthrace	ene	10.7		0.16	0.09	
Benzo(g,h,l)perylen	•	43.9		0.18	0.09	
Surrogates		%R		Min	Max	
Fluoroberizene (SS	1)	5%		50%	150%	
2-Fluorobiphenyl (S		83%		50%	120%	
5-alpha-Androstane		0%		50%	120%	
		•				

Qualifiers:

Analyte detected in the blank B

D Analyte reported from a diluted extract Undetected above the detection limit

Estimated value detected between the reporting and detection limits

Estimated value detected above calibration range E

RL Reporting limit is the sample equivalent of the lowest linear calibration concentration

Estimated detection limit is 50% of the RL

Solvent Ext. (EPA3570 Draft)

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

Preparation Method:

		Preparation Method:		Solvent Ext. (EPA3570 Draft)	
Field ID:	12" Clay Pipe	Cleanup Method(s):				
Client	GTI	Analysis Method:		GC/FID (EPA	8100 Mod.)	
Project:	Ashland	Matrix		Water		
(rojacc.		Preservation:		None		
Leb ID:	IG010301-02DupMF	Decanted:		No		
File ID:	13MARR15,D					
rie io.	131131111111111111111111111111111111111	Sample Size:		1.875	g	
Date Sampled:	2/21/01	%Solid:		5994		
Dute Received:	3/1/01	Extract Volume:		2	mL.	
Data Prepared:	3/1/01	Prep OF:		1	·	
Date Cleanup:	37 170 1	Analysis DF:		1		
Date Analyzed:	14 Mar 2001 6:05 am	Injection Volume:		0.001	mL.	
	GC 3	Injudent voiding.		0.001	THE.	
Instrument:	DRC	Batch QC:		Soil Blank		
Operator:	DRC	Baich CC.		SON DIMINE		
		Concentration		RL	DŁ	
Analyte:		mg/£.	Q	mg/L	mg/L	Comment
TARGET COMPO	UNDS:					
Benzene			Ų	0.18	0.09	
Tokuene			U	0.18	0.09	
Ethylbenzene			U	0.18	0.09	
m/p-Xylene			U	0.18	0.09	
Styrene			U	0.18	0.09	
o-Xylene			U	0.18	0.09	
sopropyttoluene			U	0.18	0.09	
Propylbenzene			U	0.18	0.09	
.3.5-Trimethylben	2 mné		U	0.18	0.09	
1,2,4-Trimethythen			U	0.18	0.09	
sec-Butylbenzene			U	0.18	0.09	
o-laopropytipluana			U	0.18	0.09	
-Butylbanzane			u	0.18	0.09	
Naphthelene		11.3	-	0.18	0.09	
?-Methylnaphthale		6.26		0,18	0.09	
-Mathylnaphthale		10.2		0.18	0.09	
Acenaphthylene		11.6		0.18	0.09	
Aconaphthene		12.3		0.18	0.09	
Olbenkofuten		1.57		0.18	0.09	
Fluorene		7.19		0.18	0.09	
Phononthrone		25.6		0,18	0.09	
Vithmoene		12.9		0.18	0.09	
- Tuorantherie		14.9		0.16	0.09	
JAMANO JAMANO		24.5		0.18	0.09	
-yrene Benz(a)anthracene		21.5		0.18	0.09	
		9.17		0.18	0.09	
Chrysene		9.04		0.18	0.09	
Senzo(b)fluoranthe		9.63		0.16	0.09	
leruzo(k)fluorenthe	THE .	이 사람들은 살이 하는 사람들이 살아 가게 되는 것이 가득하고 있다.		0.18		
Senzo(a)pyrene		29.8			0.00	
ndeno(123-od)pyri		8,26		0.16	0.09	
Otherus (n,h)anthrec		2.85		0.18	0.00	
Benzo(g.h.i)peryler	10	19,1		0.16	0.09	
Surrogates		%R		Min	Max	
Fluorobenzene (88	(1)	0%		50%	160%	
				8441	40004	
2-Fluorobiphenyl (S	iS2)	4%		50% 50%	120%	

Qualifiers:

Analyte detected in the blank Analyte reported from a diluted extract B D IJ Undetected above the detection limit

Estimated value detected between the reporting and detection limits

Estimated value detected above calibration range E

Reporting limit is the sample equivalent of the lowest linear calibration concentration Estimated detection limit is 50% of the RL RL

EDL

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

Field ID:	Aqueous Blank	Preparation Method: Cleanup Method(s);		Solvent Ext. (EPA3510 mod.)	
Client:	GTI	Analysis Method:		GC/FID (EPA	8100 Mod.)	
Project:	Ashland	Matrix:		Water		
		Preservation:		None		
Lab ID:	IG010301-AB	Decanted:		No		
File ID:	14MARRO4.D					
		Sample Size:		1000	0	
Date Sampled:		%Solid:		100%		
Date Received:		Extract Volume:	,	25	mL	
Date Prepared:	3/1/01	Prep DF:		1		
Date Cleanup:		Analysis DF:		1		
Date Analyzed:	14 Mar 2001 4:45 pm	Injection Volume:		0.001	mL	
Instrument:	GC_3					
Operator:	DRC	Batch QC:		IG010301-AB		
		Concentration		RL	DL	
Analyte:		µg/L	Q	µg/L	ho/r	Comments
TARGET COMPO	UNDS:					
Benzene			V	2.50	1.25	
Toluene		5,24		2,50	1.25	
Ethylbenzena			Ų	2.50	1.25	
m/p-Xylene			U	2.50	1.25	
Styrene			U	2.50	1.25	
o-Xylene			U	2.50	1.25	
Isopropyltoluene			U	2.50	1.25	
Propylberizens			U	2.50	1.25	
1,3,5-Trimethylben			U	2.50	1.25	
1,2,4-Trimethylben	zene		Ų	2.50	1.25	
sec-Bulylbenzene			U	2.50	1.26	
p-Isopropyltoluene			U	2.50	1.25	
n-Butylbenzene			U	2.50	1.25	
Naphthalene			U	2.50	1.25	
2-Methylnaphthaler	ne		V	2.50	1.25	
1-Methylnaphthaler	ne		U	2.50	1.25	
Acenaphthylene			U	2.50	1.25	
Acenaphthene			U	2.50	1.25	
Olbenzofuran			U	2.50	1.25	
Fluorene			U	2.50	1.25	
Phananthrene			U	2.50	1.25	
Anthracane			U	2.50	1.25	
Fluoranthene			U	2.50	1.25	
Pyrene			U	2.50	1.25	
Benz(a)anthracene			U	2.50	1.25	
Chrysene			U	2.50	1.25	
Benzo(b)fluoranthe	ne .		U	2.50	1.25	
Benzo(k)fluoranthe	ne .		U	2.50	1.25	
Benzo(a)pyrene			U	2.50	1.25	
Indeno(123-od)pyre			U	2.50	1.25	
Dibertz(a,h)anthrao	ene		U	2.50	1.25	
Benzo(g,h,l)perylen	•		U	2.60	1.25	
Total MAH		5.24				
Total PAH						
Surrogates		%R		Min	Max	
Fluorobenzene (SS		55%		50%	150%	
7. Et washinhand / C	S2)	72%		50%	120%	
2-Fluorobiphenyl (\$ 5-alpha-Androatane		86%		50%	120%	

Qualifiers

Analyte detected in the blank

D Analyte reported from a diluted extract

V Undetected above the detection limit

Estimated value detected between the reporting and detection limits

E Estimated value detected above calibration range

RL Reporting limit is the sample equivalent of the lowest linear calibration concentration

EDL Estimated detection limit is 50% of the RL Total MAH does not include C3- or C4-benzenes

Total PAH does not include Dibenzofuran

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

Field ID:	Soil Blank	Preparation Method: Cleanup Method(s):	Solve	ont Ext. (ÉPA3570 Draft)	
Client: Project:	GTI Ashland	Analysis Method: Matric:	GC/F Soil	ID (EPA	8100 Mod.)	
		Preservation:	None			
Lab ID:	IG010302-SB	Decented:	No			
File IQ:	14MARR05.D					
O-4- 0		Sample Size:	2		8	
Date Sampled; Date Received:		%Solid:	100%			
Date Prepared:	3/2/01	Extract Volume:	2		mL	
Date Cleanup:	3/2/01	Prep DF:	1			
	44 Mar hone file	Analysis DF:	1			
Date Analyzed:	14 Mar 2001 5:50 pm	Injection Volume:	0.001		mL	
Instrument:	GC_3					
Operator:	DRC	Batch QC:	IG010	302-SB		
		Concentration		RL.	DL	
Analyle:		mg/kg		ı/kg	mg/kg	Comments
TARGET COMPO	INDC.				1149king	Commence
Benzene	UNDS:					
Toluene			U	0.10	0.05	
Ethylbenzene			U	0.10	0.05	
m/p-Xylene			U	0.10	0.05	
Styrene			U	0.10	0.06	
o-Xylene			U	0.10	0.05	
			U	0.10	0.05	
Isopropyttoluene			U	0.10	0.05	
Propylbenzene			U	0.10	0.05	
1,3,5-Trimethylben			U	0.10	0.05	
1,2,4-Trimethylben	zene		U	0.10	0.05	
sec-Butythenzene			U	0.10	0.05	
p-isopropyltoluene			U	0,10	0.05	
n-Butylbenzene Naphthalene			U	0.10	0.05	
2-Methylnaphthales			U	0.10	0.05	
1-Methylnaphthaler			U	0.10	0.05	
Acenaphthylene	-		U	0.10	0.05	
Acenaphthene			U	0.10	0.05	
Olbenzofuren			U	0.10	0.05	
Fluorene			U	0.10	0,06	
Phenenthrene			U	0.10	0.05	
Anthracena			U	0,10	0.05	
Fluoranthene			U	0.10	0.05	
Pyrene			υ	0.10	0.05	
Benz(a)anthracene			U	0.10	0.05	
Chrysene			U	0,10	0.05	
Benzo(b)fluoranther			U	0.10	0.05	
Benzo(k)fluoranther			U	0.10	0.05	
Benzo(a)pyrene			U	0.10	0.05	
Indeno(123-cd)pyre	na .		U	0.10	0.05	
Olberz(a,h)anthrace			U	0.10	0.05	
Benzo(g,h,l)perylene			บ เร	0.10	0.05	
Total MAH			•	0.10	0.05	
Total PAH						
Surrogates		%R	Mi		Max	
Fluorobenzene (8\$1 2-Fluoroblehenyl (88		81%	501		150%	
		83%	509		120%	
6-alphe-Androstane	(903)	79%	501	16	120%	
Ourlines.						

Qualifiers:

B Analyte detected in the blank

D Analyte reported from a diluted aximut

U Undetected above the detection limit

Estimated value detected between the reporting and detection limits

Estimated value detected above calibration range E

Reporting limit is the sample equivalent of the lowest linear calibration concentration Estimated detection limit is 50% of the RL RL

EDL

Total MAH does not include C3- or C4-benzenes Total PAH does not include Dibenzofuran

Solvent Ext. (EPA3570 Draft)

Analytical Results for Volatile and Semivolatile Organics META Environmental, Inc.

Preparation Method:

Claric	Field ID:	Blank Spike	Cleanup Method(s):	SOLANII EXT.	(CLV2010 CHMII)	
Project	Client:	GTI	Analysia Method:	GC/FID (EP/	5 8100 Mod)	
Lab ID: IGO10302-SBS Decented: No	Project:	Ashland	Metric:		, , , , , , , , , , , , , , , , , , , ,	
Pier ID.			Preservation:	None		
Date Sampled: Samples Bize: 2 y Sold: 100% 100% 2 mL Analysis DF: 1 mL			Decanted:	No		
Delse Sampled: Substitute		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sample Size:	9	.0	
Date Received: Date Received: 2 mL Date Prepare: 1 1 1 1 1 1 1 1 1	Date Sampled:					
Date Prepared:					ml	
Date Cleanup: Date Cleanup: Date Cleanup: Date Analyzed: 14 Mar 2001 8:66 pm Injection Volume: 0.001 mL		3/2/01			1116	
Design Analyzed: 14 Mar 2001 8:56 pm Injection Volume: 0.001 mL molification molif						
National		14 Mar 2001 6:56 pm	# 10 PA 19 PA		ml .	
December DRC		- 17 Page 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ingododii Velbilie.	0.001	mL	
Analytie: mg/kg			Batch QC:	IG010302-SE)	
Analytie: mg/kg			Concentration	Rt	DI	
TARGET COMPOUNDS: Banzene 18.7	Analyte:					Comments
Benzame	TARGET COMPO	UNDS:				
Totuene 19.8 0.10 0.05 79.2% City/benzene 20.5 0.10 0.05 82.0% m/p-Xylene 20.6 0.10 0.05 82.0% m/p-Xylene 19.5 0.10 0.05 82.4% Styrane 19.5 0.10 0.05 82.4% Styrane 21.8 0.10 0.05 87.8% Isopropyltoluene 20.6 0.10 0.05 82.4% Propylbenzene 20.6 0.10 0.05 82.4% Propylbenzene 20.6 0.10 0.05 82.4% Propylbenzene 20.5 0.10 0.05 82.4% Propylbenzene 20.5 0.10 0.05 82.4% Propylbenzene 20.5 0.10 0.05 82.4% Republication 20.5 0.10 0.05 71.6% Republication 20.5 0.10 0.05 72.6% Republication 20.5 0.10 0.05 82.0% Rep		UNDS.	18.7	0.10	0.05	74.86
Ethylbanzane				7.1-	4.44	
Miles					717-	
Styrene			[18] [4] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1		-14-7	
c-Xylens 21.8 0.10 0.05 87.6% laopropylloluene 20.8 0.10 0.05 82.4% Propylbenxene 20.4 0.10 0.05 82.4% 1,3,5-Trimethylbenzene 20.5 0.10 0.05 82.0% 1,2,4-Trimethylbenzene 20.5 0.10 0.05 82.4% sec-Bullybenzene 20.5 0.10 0.05 82.4% sec-Bullybenzene 20.5 0.10 0.05 82.4% sec-Bullybenzene 20.2 0.10 0.05 82.4% sec-Bullybenzene 20.2 0.10 0.05 82.4% n-Bullythanzene 20.2 0.10 0.05 82.4% Naphthalene 17.9 0.10 0.05 73.6% 2-Methylnaphthalene 17.9 0.10 0.05 73.6% 2-Methylnaphthalene 19.0 0.10 0.05 76.9% Acenaphthylene 19.1 0.10 0.05 76.9% Acenaphtylene 19.0<					-,	The state of the s
BapropyNoluene						
Propythenizene						
1,3,5-Trimethylbenzane 1,2,4-Trimethylbenzane 1,2,4-Trimethylbenzane 1,2,4-Trimethylbenzane 1,2,6-Trimethylbenzane						
1,2,4-Trimethylbenzene		zene				
Sec-Buty/thenzene 20.6 0.10 0.05 82.4%						
P-leopropytioluene			[10] - 11 - 12 - 12 - 12 - 12 - 12 - 12 - 1			
Naphthaleme						
Naphthelene						
2-Methylnaphthalene					****	
1-Methylnaphthalene		ne .				
Acenaphthylene 19.1 0.10 0.06 76.4% Acenaphthene 19.0 0.10 0.06 78.0% Dibenzofuran 18.9 0.10 0.06 75.8% Pluorene 18.9 0.10 0.06 75.8% Phenenthrene 18.2 0.10 0.06 72.8% Anthracene 18.8 0.10 0.06 72.8% Anthracene 18.2 0.10 0.05 72.8% Pyrene 18.2 0.10 0.05 72.8% Pyrene 18.2 0.10 0.05 72.8% Pyrene 18.2 0.10 0.05 72.8% Phenenthrene 18.3 0.10 0.05 73.2% Chrysene 18.5 0.10 0.05 73.2% Benzo(b)fluoranthene 18.5 0.10 0.05 73.2% Benzo(b)fluoranthene 18.5 0.10 0.05 73.2% Benzo(k)fluoranthene 19.3 0.10 0.06 77.2% Benzo(k)fluoranthene 18.5 0.10 0.06 77.2% Benzo(k)fluoranthene 20.1 0.10 0.06 77.2% Indeno(123-cd)pyrene 20.1 0.10 0.06 80.4% Indeno(123-cd)pyrene 20.5 0.10 0.05 82.0% Total MAH 121 Total PAH 339 Surrogetes %R Min Max Fluorobenzene (\$S1) 77% 50% 150% Fluorobenzene (\$S1) 77% 50% 150%						
Acenaphthene						
Dibenzofuran 18.9						
Fluorene 18.9 0.10 0.05 75.6%						
Phenenthrane 18.2 0.10 0.06 72.8%			아들은 사람들은 아이들은 사람들은 사람들이 되었다면 하는데 아이들이 아니라 아니다.			
Anthracene 18.8 0.10 0.05 74.4% Fluoranthene 18.2 0.10 0.05 72.8% Pyrene 18.2 0.10 0.05 72.8% Berx(a)anthracene 18.3 0.10 0.05 73.2% Chrysene 18.5 0.10 0.05 73.2% Enzo(b)fluoranthene 18.5 0.10 0.05 73.2% Benzo(b)fluoranthene 19.3 0.10 0.06 77.2% Benzo(c)pyrene 18.5 0.10 0.06 77.2% Indeno(123-cd)pyrene 20.1 0.10 0.06 74.0% Benzo(g,h,i)perylene 20.1 0.10 0.05 80.4% Dibenz(a,h)anthracene 20.1 0.10 0.05 80.4% Benzo(g,h,i)perylene 20.5 0.10 0.05 82.0% Total MAH 121 Total PAH 339 Surrogetes %R Min Max Fluoroblenzene (SS1) 77% 50% 150% 2-Fluoroblehenyl (SS2) 78% 50% 120%						
Fluorenthere						
Pyrene	Fluorenthene					
Benz(a)anthracene	Рутеле		18.2			
Chrysene 18.5 0.10 0.05 74.0% Benzo(b)fluoranthene 18.3 0.10 0.05 73.2% Benzo(k)fluoranthene 19.3 0.10 0.05 77.2% Benzo(a)pyrana 18.5 0.10 0.05 74.0% Indeno(123-cd)pyrana 20.1 0.10 0.06 80.4% Dibenz(a, h)anthracene 20.1 0.10 0.05 80.4% Benzo(g,h.l)perylene 20.5 0.10 0.05 82.0% Total MAH 121 121 121 121 121 121 121 121 120			18.3			
Benzo(b)fluoranthene 18.3 0.10 0.05 73.2% Benzo(k)fluoranthena 19.3 0.10 0.05 77.2% Benzo(a)pyrene 18.5 0.10 0.06 74.0% Indeno(123-cd)pyrene 20.1 0.10 0.06 80.4% Dibenz(a,h)anthracene 20.1 0.10 0.05 80.4% Benzo(g,h,l)perylene 20.5 0.10 0.05 82.0% Total MAH 121			18.5	0.10	0.05	
Benzo(k)fluoranthana	Benzo(b)fluoranthe	ne	18.3	0.10	0.05	73.2%
Benzo(s)pyrene	Benzo(k)fluoranthe	na	19,3	0.10	0.06	
Indeno(123-od)pyrene	Benzo(a)pyrana		18.5	0.10	0.05	
Benzo(g,h,i)perylene 20.5 0.10 0.05 82.0%	Indeno(123-cd)pyre	ne	20.1	0.10		
Benzo(g,h,i)perylene 20.5 0.10 0.05 82.0%			20.1			
Total PAH \$39 Surrogates %R Min Max Fluorobenzane (SS1) 77% 50% 150% 2-Fluorobiphenyl (SS2) 78% 50% 120%			20.5			
Total PAH \$39 Surrogates %R Min Max Fluorobenzane (SS1) 77% 50% 150% 2-Fluorobiphenyl (SS2) 78% 50% 120%	Total MAH		121			
Fluorobenzene (SS1) 77% 50% 150% 2-Fluorobiphenyl (SS2) 78% 50% 120%						
Fluorobenzene (SS1) 77% 50% 150% 2-Fluorobiphenyl (SS2) 78% 50% 120%	Surrogates		%R	Min	Max	
2-Fluorobiphenyl (SS2) 78% 50% 120%		1)				
			76%	50%		
			73%			

Qualifiers:

Analyte detected in the blank

D Analyte reported from a diluted extract

U Undetected above the detection limit

Estimated value detected between the reporting and detection limits Estimated value detected above calibration range

RL Reporting limit is the sample equivalent of the lowest linear calibration concentration

EDL Estimated detection limit is 50% of the RL

Total MAH does not include C3- or C4-benzenes Total PAH does not include Dibenzofuran

TOTAL PETROLEUM HYDROCARBONS GC/FID

META Environmental, Inc. Analytical Results

GIL

Instrument: GC3-Rear Analysis Date: 3/13/2001 Alkane Range: C6-C36

Calibration Data Total			15	Sur	R	reponse Fac	toru			Call	bration Factor	
	Area	Corrected	(ug/mL)	(ugimL)	TPH	\$31 (FB)	\$\$2 (2FRP)	SSJ	TOM	\$\$1 (F8)	352	351
hent Beseine	B147957	9147857	50	50	AN ED BY ASSESSE	OF THE REAL PROPERTY.	21 14	(sec.)	IPN	(PB)	[2F8P]	(SAA)
enderds	1011年11日 · 1111日 · 111日 ·	等2000年2月2日,1980年2月2日日本共享1日		The selection and	0.87390	0.83139	0.88437	0.89623	34134.20	32746 72	34833.44	35300.82

Sample Deta	Total	is .	Other QC	5\$1	\$\$2	\$53	Sample	Final			\$51	5\$1	383			
Sample ID		Arms	Area	Area	Area	Area	Size	Volume	Percent	Dilution	%Rec	%Rec	%Rec			
	Area	OTP	(DFT)	(FB)	(2FBP)	(SAA)	(mL or g)	(mL)	Solid	Factor	(FB)	(2FBP)	(BAA)	TPH	Unite	
IG010301-01	1085070711	1786585	1646315	24545	324486	53487	1000,000	25.0	1.00G	1	37%	486%	76%			Commente
10010301-01PF	212650109	1841428	1437881	531		52884	1000.000	25.0	1.000	1	1%			854,000	marka*	* Besed on residue
19010301-01DF	812144486	1535594	1334873	2552	274723		1000,000	25.0	1.000	- 1		0%	75%	122,000	mig/kg*	weight (0.12%)
G010301-01MF	67390292	1732298	931485				1000,000	25.0	1.000		4%	394%	0%	488,000	mg/kg*	
IG010301-02	929139840	1574891	1523028	568603	913270	873050				1	2%	0%	0%	33,900	mg/kg*	
IG010301-02PF	134253927	1768716	1306502	1945	810410		2.036	2.0	0.585	1	60%	105%	99%	44,900	mg/kg	42,80
IG010301-020F	747730009	1612016	1373313	38119	925402	580328	2.036	2.0	0.585	1	0%	0%	90%	5,970	mg/kg	0,030
IG010301-02MF	53051597	1730475	968140	30119			2.038	2.0	0.585	1	5%	106%	0%	38,100	make	34,100
G010301-02Dup	853562656				13519		2.036	2.0	0.585	1	0%	2%	0%	2,020	mg/kg	2,030
		1950374	1748363	544219	899793	812257	1,875	2.0	0.585	1	66%	103%	92%	44,800	marks	
IG010301-02PFDup	129908224	2158433	1474200	1993		817527	1.875	2.0	0.585	1	0%	0%	70%	8,220		43,600
G010301-020FDup	709662700	1652936	1349291	36810	947208		1.875	2.0	0.585	1	4%	109%	2%		morks	0,070
G010301-02MFDup	47892147	1717554	876648		11984		1,875	2.0	0.585	1	0%	1%		37,200	moku	34,100
G010313-FBPF	8867106	1194300	852655				1.000	1.0	1.000	4	0%		0%	1,930	mg/kg	1,930
G010313-FBDF	14065888	2049233	1493804				1,000	1.0	1.000	-		0%	0%	-73.47	morks	
19010313-FBMF	5727926	1747060	942555				1,000			1	0%	0%	0%	40.3	mp/kg	
							1,000	1.0	1.000	F	0%	0%	0%	-178.98	mg/kg	

All samples externally calculated